

Drug Repurposing for Rare Diseases at FDA/NCTR

Zhichao Liu, Ph. D.

Division of Bioinformatics and Biostatistics (DBB), National Center of Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA)

Outlines

A brief introduction of rare diseases

In silico drug repurposing at NCTR

Drug repurposing for cystic fibrosis

Drug repurposing of oncologic drugs for rare diseases therapy

Drug repurposing for neuroblastoma by unraveling gene fusions

Bioinformatics Tools Toward Safer Drug Repurposing

Rare Disease Facts

- Affects less than 1/1500 in US or 1/2000 in Europe
- ~ 7000 known rare diseases
- 85 to 90% are chronic, serious or life threatening
- 80% are genetic
- A doctor in a busy practice would expect to see less than 1 case per year
- Diagnosis often takes years with patients shuffled from one specialist to another
- Costs Can Be Very High

http://www.nature.com/news/2011/110627/full/news.2011.387.html

Approved Orphan Product by Year

Only 600 treatment options are available!!!

What is Drug Repurposing?

FDA

De Novo drug discovery

Computational Drug Repositioning at NCTR

FDA

Liu et.al. 2013, In silico drug repositioning-what we should know? Drug Discovery Today, 18(3-4):110-5.

Computational Drug Repositioning for Rare Diseases in the Era of Precision Medicine

(B) Pathway/network based approaches

Delavan et. al. 2018, Computational drug repositioning for rare diseases in the era of precision medicine, **Drug Discovery Today**, 23 (2), 382-394

Drug Repurposing for Cystic Fibrosis

Cystic Fibrosis and Approved Drugs

Disease

- Cystic fibrosis (CF) is an inherited chronic (rare) disease that affects the lungs and digestive system.
- Caused due to a defect in the gene that produces a protein called cystic fibrosis transmembrane conductance regulator (CFTR).
- ~30,000 children and adults in the United States (70,000 worldwide)
 - ~1,000 new cases per year
 - The median age of survival is late 30s

Drug

- Kalydeco[®] (VX-770, ivacaftor) approved by the FDA in 2012 for CF patients aged 12 months and older with G551D mutation in *CFTR* gene. It was developed with the help of \$75mil from the Cystic Fibrosis Foundation.
- Symdeco[®] (tezacaftor 100mg 150 mg ivacaftor) fixed dose combination approved by FDA in 2018 for CF patients aged 12 years and older who are homozygous for the *F508del* mutation or who have at least one mutation in the *CTFR* gene that is responsive to tezacaftor/ivacaftor based on *in vitro* data and/or clinical evidence.

Hypothesis to Identify Drug Repurposing Candidates for CF

- Cystic fibrosis (CF) is regulated by a set of feed-forward loops (FFLs) that contains genes-TF-miRNA.
- Drugs interfering the CF specific FFLs can treat CF.

Liu, Z., et al. 2014, "Deciphering miRNA transcription factor feed-forward loops to identify drug repurposing candidates for cystic fibrosis." **Genome Medicine**, 6(12): 94.

Bioinformatics Approach to Identify Drug Repurposing Candidates for CFA

- Workflow:
 - Collecting CFTR related genomic data (mRNA, miRNA, etc).
 - Constructing CFTR-specific FFLs with CFTRspecific genes and transcription factors.
 - Identifying drugs with potential to treat CF by interacting with the CF-specific FFL.

Bioinformatics Approach:

- Takes drug safety and affordability into consideration.
- Can be used for drug repurposing for rare diseases in general.

Liu, Z., et al. 2014, "Deciphering miRNA transcription factor feed-forward loops to identify drug repurposing candidates for cystic fibrosis." **Genome Medicine**, 6(12): 94.

Summary Information of Repurposing Candidates for CF Treatment

Evidence from Clinical Trials (clinicaltrials.gov) or the Literature

Drug Names	Involved FFLs	Original Indication	Boxed Warnings	Price (\$)/ tablet	PMID or Clinical.gov ID
Dexamethasone	hsa-mir-26b↔CREBBP	Anti-inflammatory; Oncologic uses; Glucocorticoid resistance; Obstetrics; High altitude illnesses	No	0.29	PMID:15223012
Simvastatin	hsa-miR-200c↔JUN	Hypercholesterolemia	No	1.34	NCT00255242
Levamisole	hsa-mir-26b↔CREBBP and hsa-miR-200c↔JUN	Dukes' stage C colon cancer; Worm infestations	No	0.18	PMID:9609763
Choline	hsa-miR-200c↔JUN and has- miR-29c↔TFAP2C	Dietary shortage or imbalance	No	0.71	NCT01070446
rosiglitazone pioglitazone	hsa-miR-200c↔JUN and has- miR-29c↔TFAP2C	Type 2 diabetes	Yes	1.08/ 1.38	PMID:20154695 NCT00322868

Drug Repurposing of Oncologic Drugs for the Treatment of Rare Diseases

The Relationship between Rare Diseases and Cancers

- Some patients with rare diseases are predisposed to develop cancer
- Some genes linked to cancer have also been identified as causative genes for rare diseases
- Rare diseases and cancer could perturb the same biological pathways

Liu et. al., **Potential reuse of oncologic drugs for the treatment of rare diseases**, *<u>Trends in Pharmacological Sciences</u>*, 2016, 37, 843-857.

Molecular Association between Cancer and Rare Diseases

The relationship of the targets of oncologic drugs and rare disease genes

Resources:

- Gene-rare disease relationships are curated from Orphanet
- Cancer genes are curated from TCGA pan-cancer data sets
- PPI are based on STRING v11.0 database
- Drug-target relationships are extracted from Therapeutic Target Database (TTD)

Gene-gene distance in a PPI network

Rare Diseases that Could be Treated with Oncologic Drugs Evidence from Clinical Trials (clinicaltrials.gov) or the Literature

Orphanet ID	Rare disease	Evidences	Categories	
117	Behcet disease	Cli, Lit		
500	LEOPARD syndrome	Lit/Exp		
2884	Piebaldism	Lit	Rare skin disease	
774	Rendu-Osler-Weber disease	Cli		
3444	Watson syndrome	Lit		
670	PIBIDS syndrome			
284973	Marfan syndrome type 2			
88636	Aortic dilatation - joint hypermobility - arterial tortuosity	nt hypermobility - arterial rtuosity		
140944	CLOVE syndrome			
1340	Cardiofaciocutaneous syndrome	Lit	Rare cardiac disease	
79315	D-2-hydroxyglutaric aciduria	Lit	Rare neurologic disease	

Drug Repurposing for Neuroblastoma by Unraveling Gene Fusion Events

Gene Fusion for Anticancer Drug Development

FDA

Preliminary Results of Drug Repurposing for Neuroblastoma

Bioinformatics Tools Toward Safer Drug Repurposing

FDALabel – an Amazon Cloud Version

- A web-based application
- Customizable searches of over 100,000 labeling documents (RX, OTC, etc)
- One stop solution for FDA approved drug labeling information

https://nctr-crs.fda.gov/fdalabel/ui/search

Drug Induced Rhabdomyolysis Atlas (DIRA)

DIRA mainly provides three folds of drug-induced rhabdomyolysis related information including a classification scheme, post-marketing surveillance, and drug property information.

 Statin drugs are one of popular repurposing therapeutic categories

FDA

- Safety concerns for statin drugs and how to manage
- We developed a Drug Induced Rhabdomyolysis Atlas (DIRA)

http://www.adratlas.com/dira/

Wen et al., Drug-Induced Rhabdomyolysis Atlas (DIRA) for idiosyncratic adverse drug reaction management, Drug Discovery Today, 2019, 24(1), 9-15.

Thank you for your attention!!!

Any suggestion is very welcome. We are looking forward to different level of collaboration. please contact me via <u>Zhichao.liu@fda.hhs.gov</u>

Acknowledgement

FDA

- Weida Tong
- William Slikker
- Shashi Amur
- Heather Stone
- Leonard Sacks
- Mike Mikailov
- Hong Fang

Other collaborators

- Brian Delavan (UALR)
- Ruth Roberts (ApconiX)
- Jurgen Borlak (Hannover Medical School)
- Junguk Hur (University of North Dakota)
- Halil Bisgin (University of Michigan)
- Wenjun Bao (SAS)

- Ruili Huang (NCATS)
- Jean Yuan (OD)
- George Santangelo (OD)

Backup slides

Better Understanding of Data and Methodologies

FDA

An established framework for applying our research results and tools development to impact the review process

Potential Drug Repositioning Resources at FDA

hCoordination/ucm2018190.htm

Programs Under FDA Office of Orphan Products Development

FDA

Programs	Program Descriptions
Orphan Drug Designation	Orphan status for drugs and biologics which are defined as those intended for the safe and effective treatment, diagnosis or prevention of rare diseases/disorders.
Humanitarian Use Device (HUD)	Designates medical devices that are intended to benefit patients in the treatment or diagnosing a disease or condition.
Rare Pediatric Disease Priority Review Voucher Program	A sponsor who receives an approval for a drug or biologic for a "rare pediatric disease" may qualify for a voucher that can be redeemed to receive a priority review of a subsequent marketing application for a different product.
Orphan Products Grants Program	Funding for clinical research that tests the safety and efficacy of drugs, biologics, medical devices and medical foods in rare diseases or conditions.
Pediatric Device Consortia (PDC) Grants Program	Funding to develop nonprofit consortia to facilitate pediatric medical device development.
Orphan Products Natural History Grants Program	Support studies that advance rare disease medical product development through characterization of the natural history of rare diseases/conditions

https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/OfficeofScienceandHealt hCoordination/ucm2018190.htm